Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available May 4, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Cooperative perception that integrates sensing capabilities from both infrastructure and vehicle perception sensors can greatly benefit the transportation system with respect to safety and data acquisition. In this study, we conduct a preliminary evaluation of such a system by integrating a portable lidar-based infrastructure detection system (namely, Traffic Scanner [TScan]) with a Society of Automotive Engineers (SAE) Level 4 connected and automated vehicle (CAV). Vehicle-to-everything (V2X) communication devices are installed on both the TScan and the CAV to enable real-time message transmission of detection results in the form of SAE J2735 basic safety messages. We validate the concept using a case study, which aims at improving CAV situation awareness and protecting vulnerable road user (VRU) safety. Field testing results demonstrate the safety benefits of cooperative perception from infrastructure sensors in detecting occluded VRUs and helping CAVs to plan safer (i.e., higher post-encroachment time) and smoother (i.e., lower deceleration rates) trajectories.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Connected and automated vehicles (CAVs) provide various valuable and advanced services to manufacturers, owners, mobility service providers, and transportation authorities. As a result, a large number of CAV applications have been proposed to improve the safety, mobility, and sustainability of the transportation system. With the increasing connectivity and automation, cybersecurity of the connected and automated transportation system (CATS) has raised attention to the transportation community in recent years. Vulnerabilities in CAVs can lead to breakdowns in the transportation system and compromise safety (e.g., causing crashes), performance (e.g., increasing congestion and reducing capacity), and fairness (e.g., vehicles fooling traffic signals). This paper presents our perspective on CATS cybersecurity via surveying recent pertinent studies focusing on the transportation system level, ranging from individual and multiple vehicles to the traffic network (including infrastructure). It also highlights threat analysis and risk assessment (TARA) tools and evaluation platforms, particularly for analyzing the CATS cybersecurity problem. Finally, this paper will provide valuable insights into developing secure CAV applications and investigating remaining open cybersecurity challenges that must be addressed.more » « less
- 
            Intersection movement assist (IMA) is a connected vehicle (CV) application to improve vehicle safety. GPS spoofing attack is one major threat to the IMA application since inaccurate localization results may generate fake warnings that increase rear-end crashes, or cancel real warnings that may lead to angle or swipe crashes. In this work, we first develop a GPS spoofing attack model to trigger the IMA warning of entry vehicles at a roundabout driving scenario. The attack model can generate realistic trajectories while achieving the attack goal. To defend against such attacks, we further design a one-class classifier to distinguish the normal vehicle trajectories from the trajectories under attack. The proposed model is validated with a real-world data set collected from Ann Arbor, Michigan. Results show that although the attack model triggers the IMA warning in a short time (i.e., in a few seconds), the detection model can still identify the abnormal trajectories before the attack succeeds with low false positive and false negative rates.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available